Plot a bar plot using ggplot2.

bar_plot(
  df,
  x_var,
  fill_var = NULL,
  y_var = NULL,
  style = c("stack", "fill", "dodge")[1],
  group_by_x_var = TRUE,
  y_percent = TRUE,
  percent_accuracy = 1,
  y_lim = NULL,
  y_breaks = 2000,
  x_breaks = NULL,
  y_breaks_end = 1e+05,
  title = NULL,
  subtitle = NULL,
  title_size = 14,
  subtitle_size = 10,
  title_margin = 1,
  y_lab = NULL,
  x_lab = NULL,
  background_color = "moccasin",
  panel_grid_color = "grey",
  panel_grid_size = 0.3,
  contour_line_size = 0.1,
  axis_size = 0.3,
  axis_text_angle = 0,
  text_size = 8,
  fill_colors = c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33",
    "#A65628", "#F781BF"),
  legend_pos = "bottom",
  legend_labels = ggplot2::waiver(),
  label_breaks = ggplot2::waiver(),
  legend_background = "transparent",
  legend_row = NULL,
  legend_col = NULL
)

Arguments

df

Data frame.

x_var

Variable for x axis, use string name. Recommended that x_var is in character in df.

fill_var

Variable for the different colors in bars, use string name. Use NULL if only one color for bars.

y_var

Variable for y axis, if NULL, count is used.

style

3 different styles of bar plots, "stack", "fill", or "dodge". fill requires y_percent TRUE.

group_by_x_var

Only relevant for style dodge. Boolean indicating if percentages should be for x_var or fill_var.

y_percent

If TRUE, y axis is in percent form. Otherwise in count form.

percent_accuracy

Set accuracy for percent_format.

y_lim

Limit on y axis.

x_breaks, y_breaks

Length between each break on x/y axis.

y_breaks_end

Break end, default for 100000. Works for all count values below that.

title

Plot title, NULL if no title.

subtitle

Small text under title, NULL if no subtitle.

title_size

Text size of title in pt.

subtitle_size

Text size of subtitle in pt.

title_margin

Distance between subtitle and title in pt. If no subtitle, title_margin 0.5*title_size.

y_lab

Y-axis label, use NULL for no label.

x_lab

X-axis label, use NULL for no label.

background_color

Color of the panel background.

panel_grid_color

Color of the panel grid lines.

panel_grid_size

Size of the panel grid lines in plot, useful to change if large dpi!

contour_line_size

Contour around bars size.

axis_size

Size of the axis lines.

axis_text_angle

Angle of the tick texts, 45 is recommended for many x levels.

text_size

Size of the text in pt.

fill_colors

Color of the different categories in fill_var.

legend_pos

Position of the legend in plot, if c(1,1), c(1,0) etc, legend inside plot.

legend_labels

Label for each legend key.

label_breaks

Order of the legend keys.

legend_background

Color of the legend background.

legend_row

How many rows for the legends.

legend_col

How many columns for the legends.

Value

ggplot object containing bar plot.

Examples

# Style stack bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', y_breaks = 2)
bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', y_percent = FALSE, y_breaks = 2000)
# Style stack with y variable included df <- ggplot2::diamonds %>% dplyr::group_by_('color', 'cut') %>% dplyr::summarise(y = dplyr::n())
#> Warning: group_by_() is deprecated. #> Please use group_by() instead #> #> The 'programming' vignette or the tidyeval book can help you #> to program with group_by() : https://tidyeval.tidyverse.org #> This warning is displayed once per session.
bar_plot(df = df, x_var = 'color', fill_var = 'cut', y_var = 'y', y_breaks = 2)
# Style fill bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', y_breaks = 10, style = 'fill')
# Style dodge grouped by x_var (color in this case) bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', style = 'dodge', y_breaks = 10)
bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', style = 'dodge', y_percent = FALSE, y_breaks = 2000)
# Style dodge grouped by fill_var (cut in this case) bar_plot(df = ggplot2::diamonds, x_var = 'color', fill_var = 'cut', style = 'dodge', group_by_x_var = FALSE, y_breaks = 10)
# Since bar_plot() returns ggplot object, it is possible to add more features # Here we zoom the plot using coord_cartesian(): df <- dplyr::filter(ggplot2::diamonds, clarity %in% c('SI1', 'SI2', 'VS2')) bar_plot(df = df, x_var = 'clarity', style = 'dodge', y_percent = FALSE, y_breaks = 2000) + ggplot2::coord_cartesian(ylim = c(8000, 14000))